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Abstract. Various forms of theg-boson are explained and their hidden symmetry revealed
by transformations using the exponential phase operator. Both the one-component and the
multicomponent-bosons are discussed. As a byproduct, we obtain a new boson algebra having
a shifted vacuum structure and define a global operdidy gauge transformation.

1. Introduction

The g-bosori is the simplesy-deformed algebra having a deformation parameter. Various
kinds ofg-bosons have been introduced for their own motives. They can be transformed into
each other by proper redefinitions of their generators. The existence of such transformations
suggests that the-bosons may be equivalent to each other, and there will exist underlying
symmetries that make the equivalence sensible. However, we cannot see any clues for
finding such symmetries.

One of the reasons for this fallacy of understanding may be connected to the difference
in the methods of construction, such as in the process of the Schwinger realizatig{2)f
in [1-3], and ofsu, (n) in [4], as the components of the fundamental representation,of)

[5], or for other motives [5—-10]. Each type gtbosons transforms into the others [11-13].

Another reason is that the Hopf algebraic structure does not fixytheson uniquely
[14,15]. However, in this paper we will not be concerned about the Hopf structure [16, 17].

Recently, a new method of constructiggbosons has been presented in [18,19] in
which g-bosons are rewritten by the bi-product of different generators of bosonic type and
taking an expectation value for a density operator. Although its connection with the Hopf
structure has not been clarified, it explains sajagroperties easily.

In this paper, we restrict the method to the boson and the exponential phase operator
[20-22]. Depending on the explicit choice, the different formgydfosons appear, clearly
pointing to the difference and similarity between thébosons. As a resulig-bosons,
treated in this paper, are related to each other with the operator versidrilofgauge
transformation and the similarity transformation by the exponential phase operator. As a
byproduct, we find a new boson algebra which is equivalent to the normal boson algebra
except of the shifted vacuum, and the operator version oftttl® gauge transformation

1 Permanent address: Department of Physics, Jeonju University, 1200 Hyoja-3 Chonju, Chonbuk, 560-759, Korea.

i There are equivalent terminologies such as¢héeisenberg-Weyl algebra and theoscillator, but we take the
g-boson in order to emphasize its relation with the complex variable.
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which becomes a normal gauge transformation in the classical limit. We work both on the
one-componeny-bosons and on the multicomponent forms.

The paper is arranged as follows. In section 2, we treat the statistical mixture in order
to see the physical meaning of the exponential phase operator and to define the physical
density operator fog-bosons. In section 3, we construgtbosons and find connections
between them. We also define a new boson algebra and the operator versiorUgfithe
gauge transformation. In section 4, we treat the multi-compapdaatsons and find a hidden
symmetry. Finally, we briefly discuss problems encountered along with extensions to the
g-fermion and so on.

2. The statistical mixture and the Cuntz algebra

Let us consider the statistical mixture of the bosonic system in order to define the density
operator of the expectation value which will appear in the process of constryebogons.
We also discuss the physical meaning of the exponential phase operator. A more detailed
physical system related to this section should be found in quantum optics [20].
Assume that a system has a known probabilfy when it is in the stateéR). Here,
R is a label that runs over a set of pure states sufficient to describe the system. The states
described by the probability’; are called thestatistical mixture and the magnitude of
the P for |R) contains all the available information about the state. An example of a
statistical mixture is provided by the thermal excitation of the photons in a cavity mode.
The probability P, means that photons are excited at the temperat@ireln this case, the
result of an experiment depends on an ensemble average of some observable quantity.
Consider some quantum mechanical oper&@orThe average value of the observable
for the pure statéR) is (R|O|R), and hence the ensemble average of the observable for
the statistical mixture specified b is

(0) = Pr(RIO|R). 2.1)
R

It will be assumed thaPy is a normalized probability distribution

Y o Pp=1 (2.2)
R

The average(O) is independent of the particular complete set of the state chosen for
evaluation. This fact is apparent by defining the density operatas follows:

p=7)_ PrlR)(RI. (2.3)
R

The density operator contains exactly the same information as the probability distribution
Pr. The averagéO) can be written

(0) =Tr(p0O) (2.4)

where the trace of an operator (hence abbreviated to Tr) is the sum of its diagonal matrix
elements for any complete set of states. In particular, the expectation value for the identity
operator is equal to unity by the definition of the probabilitydir= >, Pz = 1.

We can regard a pure state as a special case of a statistical mixture in which one of the
probabilities P is equal to unity and all the remainingg are zero. The pure-state density
operator is defined as

pr = |R)(R|. (2.5)
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In this case, the state is retracted on a particular state and statistical description becomes
somewhat redundant. However, the concept of the density operator remains valid. Also the
pure-state density operator satisfies the property of the projection operator

PR = PR (2.6)

which is easily proved from definition (2.5).
From now on, for later application, we will particularly restrict our attention to the
bosonic systenta, af, N), where

[a,al =1 [N,a'l = al. (2.7)
The Hilbert statdn) is characterized by the number operator
Nln) = nin) aln) = «/nln — 1). (2.8)

The ground stat¢D) is defined by the annihilation operat@j0) = 0 and all other states are
constructed from itjn) = (1/+/n!)(a’)"|0).

The generators of the boson algebra can be decomposed into the magwijtueethe
number operator and the phageif we quantize in the polar coordinaf®/, ¢) of the phase
space,

a=e,/N al = \/Nel. (2.9)

Here, the newly introduced operatdes, el) are called the exponential phase operators. To
denote its relation with the-boson, we introduce subscript There are various different
definitions of the exponential phase operators, but we will choose the Susskind—Glogower
notation [21, 22],

eqel =1 ele, =1—10)(0) (2.10)

which is not unitary. The algebra is called the Cuntz algebra and will play an important
role in the large N-expansion of the matrix model [23—-25] and when calculating the
anomaly [26]. Although the Susskind—Glogower notation is mathematically easy and a
useful treatment, it is uncertain that it is a real physical operator which describes the nature
[27]. Nevertheless we will choose the notation for its convenience.

As we see in products of the exponential phase operators, they are similar to the
real phase (the unitary operator) except the vacuum. The commutation relations among
(N, e}, e,) are derived from the boson algebra (2.7) and definition (2.9),

[N, e,] =—e, [N, el] = el. (2.12)

The exponential phase operator and its ajoint shift up and down one step in the number
state,

elln) = |n+ 1) eqln) = |n —1). (2.12)

We now turn to the properties of the exponential phase operators in order to find their
physical meanings [20]. They are easily seen in the coherent state of the boson algebra
defined by the eigenstate of the annihilation operator,

alz) = zlz). (2.13)

This |z) is normalized,(z|z) = 1, and thus expressed by the superposition of the number
states:

_ alz?/2 "
z)=¢€ E ny. 2.14
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The coherent density operatpg can be written as

pe = lz)(zl. (2.15)

The density operator shows a Poisson distribution with respect to the number state:
|Z|2n
n!

[(n]z) > = exp(—|z|%) (2.16)

The mean value of the number operator (or mean number in short) under this probability is
|z|?, i.e. the radius or the magnitude of the complex variable

(zIN|z) = |z]% (2.17)

Similarly, the expectation value of the exponential phase operator becomes the physical
(real) phase in the limit of the large mean number (i.e. the classical limit),

|z]"
((n + D)lnhl/2"

It is not possible to evaluate the summation analytically, the asymptotic expansion is
obtained for largez|?, i.e. the classical limit, with

|z

(2l ealz) = zexp(—1z1H) D (2.18)

) _explzf?
— nl(n+1DV2 |z

1
1-— 21 2.19
( st ) 22> (2.19)

Thus, the expectation value of the exponential phase operator becomes
z 1 ;
Wz) = 1— + .. = €9, 2.20
(leale) |z ( 8|z|? ) (2:20)

Sincez is a complex number, we can decompose it into its magnitude and phask, €,
then the exponential phase operator becomes the physical phase asymptotically.

We define other well known density operators for later convenience. The pure-state
density operator for a number state is given by

pn = |n)(n|. (2.21)

For the thermally excited state, we define the exponential distribution (a Planck distribution)
for a given temperatur@ and a quantal energyy as

pe=(1—g" Y q”In)n|
= (1-q¢*q*" (2.22)
where ag-parameter is given by
qz = eX[X—Eo/kBT). (2.23)

This parameter will act like the-parameter in g-deformation. Thus we can see a physical
deformation depending on the temperatirand the quantal energy.
The following mean values under the exponential distribution (2.22) are obtained as

(a'a) = (2.24)

(aa'y = ) (2.25)
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Also those related with the exponential phase operators (2.10) are obtained as follows:

(e%el*y =1 (2.26)
(el ey = g™ (2.27)
(O(N —a)) = g*. (2.28)

Here,0(x) is a step function ana > 0 is taken as an integer in order to keep the structure
of the number state.

3. Construction of g-bosons and the hidden transformations

We consider a system in which the algebra is described by the gendratar®,) satisfying
the formal commutation relation

[D_, D] = Do. (3.1)

We will not specify the commutators betweéh. and Dy. Although they are important
to close an algebra, their effect is null in the expectation value. Furthermore, we assume
that two sets of independent bosofis, af, N,), (b, bt, N;)} contribute to the generators
D in the product forms. The Schwinger representation:uafl, 1) (or su(2)) is the most
typical example in which a product of two independent bosons forms the new algebra. The
simple product of two independent bosons has been well studied [28], so we should extend
it to that of independent bosonic contributions such as boson generators themself, their
exponential phase operators and combinations of the exponential phase operators and the
number operators. A part of the algebra has already been treated in [19].

We choose the forms of two operatabs. as follows:

D.=A.B,. (3.2)

Ay and By are assumed to be independent, i.e. commuting, and have the property of only
a- and b-bosons, respectively. In order not to complicate matters further, we restrict
and B.. to have only one quantal number of their own:

[Na, Ai] = :l:Ai [be A:t] = 0
[No, B£] =0 [Ny, B+] = =B+
[A+, B:] =0 [Af, B+] = 0. (3.3)

Here N;, i = a, b is the number operator of each boson.
From the product form (3.2) ob.., we rewrite the commutator (3.1) as follows:

A_A+B_B+ - A+A_B+B_ == DO. (34)

We assume that its full Hilbert space df. in D, is known. The property of theB.
should be determined to keep the algebralnf depending on the forms aby. Under
this assumption, equation (3.4) itself is the relation Bar. To solve it, we should take an
expectation value for a density operator,

(A_Ay)(B_By) — (A4 A_){B.B_) = (Do). (3.5)

We will discuss the results with respect to density operators. Two types of density operators
(2.21) and (2.22) will be used in this paper to see the algebraic structure (the pure-state
density operator) and thg-deformation (the exponential density operator). The coherent
density operator has already been used to interpret the physical meanings of the exponential
phase operator. Then relation (3.5) gives an algebraic relation depending on the forms of
the density operators. Generally we use the pure-state density operator only.
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We briefly discuss the algebraic solution fBr. from (3.5). We take the pure-state
density operators for botid. and B.. The relation reduces to an algebraic difference
equation in the variables, andn,, formally written as

Ang + DB(ny + 1) — A(ng)B(ny) = D(ng, ny). (3.6)

Since the full structure ofi. is assumed known, we explicitly know about the form4f
Relation (3.6) becomes a difference equationforSo we may find an algebraic solution
for B, and sequentially obtain the form 8f. with respect to:,. The B formally represents
the square of magnitude &.. Since we assume from the outset tBat changes a quantal
number of N, they are thus easily realized by the product of the square rodt ahd
the exponential phase operator. The so-obtained solutidh.as a formal one which we
should change into a normal form expressed by the boson gene¢atofs. This can be
done by using the definition of the exponential phase operator (2.9) and (2.10).

However, the situation is similar if we take an exponential density operatod for
and a pure-state density operator ®r, respectively. We should choose the pure state
for By, because their full Hilbert space is not assumed to be known. Relation (3.5)
under the resulting expectation value 4f. gives a new relation foilB. depending on
the parameter arising from the density operator. In other words, the relatia®.féwoks
like the deformed algebra with respect to the algebraic solution. In reality, the for®s of
as the solution should not depend on the forms of the density operators, since the algebra
of (D4, Do) is satisfied without the density operator. The resulting algebra should not have
the deformation parameter [19, 20], but, in many cases, the relation takes the form of the
well known g-deformed algebra under redefinition of the parameter. As a result, we can
consider the process of taking the expectation value as a tool to obtgideformation
physically. Also this method explicitly and directly explains why the mutual transformation
in the equivalent class of the-deformations is possible and why they take such forms. The
explanation is that they are related to each other by the various transformations from the
initial undeformed operators.

We now proceed tg-bosons. The-bosons have been defined in different forms:

1 type | 3.7)
L~ _ 1— 42 r .
B,B+ _ q2B+B, — 72Nq type (3 8)

q " type Il (3.9)

(1 —g?g=2M type II'. (3.10)

Here we impose the various structural types togHmsons for our own convenience. These
g-bosons have been introduced by different authors [1-10]. Their mutual transformations
can be found in [11-13]. We now reconstruct the above typeshaisons from the relation
(3.5).

First, we proceed to the-boson of type | by takingA. as the exponential phase
operators and)g as the identity operator up to thevacuum,

Ay =el A_=e, Do =1. (3.11)

Relation (3.4) is rewritten asanB_B+ — eleuB+B_ = 1. The algebraic solution oB.
is approximately the bosonic generators, Bg. = bf, B_ = b. We note that, to get an
algebraic bosonic solutior)g should be in the formDy = 1 + N,|0,)(0,|. Thus we say
that Dy is the identity operator up to thevacuum. TakingDy = 1 isa kind of a constraint
For a more detailed treatment of the constraint see [19].

Then what is the meaning db, = e} B, (D_ = ¢,B_)? To see this, we recall that the
exponential phase operator becomes the physical phase operator in the large mean number
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limit (the classical limit) of the coherent state, i{ele,|z) = z/|z| +--- ~ €. SinceB. is
equal to the boson generators, the related generétors: ¢, B_ (D, = eZB+) are similar
to a globalU (1) gauge transformation of the normal boson generators in the classical limit
of the coherent state of theboson. Thus we can say that the operaigsare the operator
global U (1) gauge transformation of the normal bosoB.. is obtained fromD. by the
operatorU (1) gauge fixing, saB.. is interpreted as the gauge fixed operatoDaf. Taking
the expectation value can be understood as gauge fixing.

Relation (3.5) under condition (3.11), i.e. taking the expectation values for the
exponential density operator df. in (2.26) and (2.27), gives

B_B, —¢’B,B_ = 1. (3.12)

Here, we put the tilde on the operator in order to represent the connection between the
deformed and the original operators. As a resBlt,is theg-boson of type I. We note that

the g-parameter arises from the exponential distribution of the statistically mixed state. We
use the density operator

o0
pen, = (L= q%) Y %" Ina, n) (np. nal. (3.13)
n,=0
As a result, we can say th#te operatorU (1) gauge transformed boson is deformed into
the g-boson of type.l
As a second example, we choode as the boson an®, as the identity operator up
to the b-vacuum in (3.5):

y A_=ua Do=1. (3.14)

This example is the reverse choice of the first example (3.11). The relation (3.4) is rewritten
asaa'B_B, —a'aB.B_ = 1. Note thatDy = 1+ N,|0;)(0,]. Thus the state sum for
A, =a' (A_ = a) is just like that of the virtual particle state and as a result finds the
gauge information only.

The algebraic solution foB.. is the exponential phase operator,

B_=e B, =e. (3.15)

This solution is easily seen from the first example (3.11).
We take the expectation value with the density operator (3.13), then consulting (2.24)
and (2.25) gives the relation

B_B, —¢*B,B_ =1—4° (3.16)
This relation shows thg-boson of type’l As a resultthe gauge transformation, i.e. the
exponential phase operator, is deformed into ghkoson of type’l

We now construct thg-boson of type |, and back to type Il. We tak&.. as the boson
and Dy as the identity except up to theh state of thez-boson and thé-vacuum, i.e.

Y A_=a Do = 6(N, — ). (3.17)

Relation (3.4) is rewritten aga'B_B, — a'aB,.B_ = 6(N, — «). In order to keep the
algebraic structure, we require thatis independent of.,,

[Na,a] =0. (3.18)

The corresponding algebra looks very strange in termsgf since it is equal to the
identity depending on states of the algebra. This special property will be treated further
after constructing the-boson of type Il
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The algebraic solution foB. of (3.4) is the exponential phase operator satisfying
(2.10). After taking the expectation value for the density operator (3.13) and consulting
(2.24), (2.25) and (2.28), relation (3.4) gives thdoson,

B_B, —¢’B.B_ = (1—q¢%q~%. (3.19)
This relation shows thg-boson of type Ilif we take

a=N, (3.20)

B_B, —¢?B,B_ = (1—¢%>q~ . (3.21)

This choice is acceptable, sinc¥,, N,] = 0.
From now on, we consider the meaning of this choice (3.17). Under the choice, relation
(3.4) is written as
aa'B_B. —a'aB.B_ =6(N, — a). (3.22)

We first change the nontrivial terf( N, — «) into the identity by a proper transformation.
It is just an operator similarity (i.e. adjoint) transformation.oby the «th power of the
exponential phase operateff such ase,”xe®. We take the operator similar transformation
in which Dy = (N, — «) changes into the identity operator,

el“9(N, —a)e® =6H(N,) = 1. (3.23)
We make an operator similarity transformation on the boson algebe, N,) and write
them as(a(a), a'(a), N,(a)) with

a(a) = ejlaaeg al(e) = emateg. (3.24)
These operatorga(«), af(«)) form anewboson, so we call it the-adjoint bosonfrom
now on. The relation (3.22) changes into (3.14) underotfadjoint boson, i.e.

a(@)a'(@)B_B; —a'(a)a(e)BLB_ = 1. (3.25)

The g-boson (3.21) is an operataradjoint transformed version of (3.16).
Let us consider more properties of theadjoint boson. The generators of theadjoint
boson satisfy the boson algebra with a different vacuum,

[a(@), a’(@)] = 6(N, — ). (3.26)
The vacuum of thei(«)-boson is defined in the same way as thboson with

a(a)]0,(a)) = 0. (3.27)
This vacuum contains up to theh number state of the normal boson,

a(@)|ng) =0 if n, <a. (3.28)
Thus we can think of the-vacuum as the sum of the annihilated states,

0@ = 3 e lng) (3.29)

n,=0

where thec,,'s are constants that should satisfy the normalization
lea, 12 =1 (3.30)
n,=0
since the vacuum is normalized to unit@{(«)|0,(«)) = 1). The vacuum of the(«)-boson
forms the fundamental representation of the gla$¥&k o + 1) symmetry.
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We define the number operattf, (o) of the a(a)-boson by

Ny(a) = d'(@)a(a). (3.31)
The number staté, (o)) of the a(a)-boson is given by
Na(a)lnu (Ol)) = na|nu(a)> (332)
1
— T ng —
[ng (o)) = W(a ()"0 (@) = Ing + o) ng 2 0. (3.33)

We take the expectation value of théx)-boson for the exponential density operator (2.22).
Motivated from the above operator adjoint transformation of the boson generators, we
make the transformation on the exponential phase operator,

e, () = el‘)‘eaeg el (@) = el“eieg. (3.34)

These exponential phase operators act like the exponential phase operator (2.10) for the
vacuum|Q, («)),

eq(@)el (@) — el (@)eq (@) = 10, () (0, (). (3.35)

They also change the quantum number by one step and satisfy the same form of commutation
relations as in (2.11).

Finally we can construct thg-boson of type Il by using the-adjoint exponential phase
operator. We takei. as thex-adjoint exponential phase operators abglas the identity
up to the vacuumo, («)) in (3.4),

A, =el () A_ = e,() Do = 1. (3.36)

Then the algebraic solution foB. is the bosonic generators, i.8, = b, B_ = b.
Thus D can be considered as the operator glabél) gauge transformation of the boson
generators. Relation (3.5), under the density operator (3.13), gives

é_g+ — q2é+é_ = q_za. (337)
This algebra is theg-boson of type Il if we choose = N, with
B_B, —¢?B,B_ = g%V, (3.38)

As a result, theg-boson of type Il is related to the gauge transformation by the adjoint
transformation of the exponential phase operator.

4. SU ,(NN)-covariant bosons andSU (IN) symmetry

We now proceed to extend the system (3.1) toAascomponent systemD.;, D_;, Dq;;)
which satisfies the commutation relations

[D—i, D4;] = Doi; (4.1)
in the formal sense. All other commutators are related to the ladder structure of the algebra
and we will fix them in the middle of the construction @fbosons.
Similar to the previous one-component case, we introduce two sels-aimponent

independent bosonga;, a;, N;) (b;, b}, Ny;)} such that

[a[,qj]z&j-:[b,-,bT] i,j=1,2,...,N

J
Nu = dla; Nyi = blb; i=1...,N. (4.2)

The Hilbert space, characterized by the number operaters N,;), is spanned by pure
states|ng;, ..., npy)-



3692 S U Park

We assume thab.; are decomposed into the- and b;-contributions,

D_j=A_B_; Dy = Ay iBy,. 4.3)
The mutually independemt.; and B.; are fixed to the one-step operator,

[Nui, Axj] = £6ijAxi [Npi, B+j] = £6;j B+

[A+i, A+j]1=0 [Asi, Bxj] = 0=[Ay;, B5j] i# . (4.4)

For simplicity, the choice ofd; is restricted to a normal boson and an exponential phase
operator. Also,Dy; is fixed to the identity operator and the step function to find the known
g-boson. After substituting the product form Bf.; into the commutator (4.1), we rewrite
the relation as

A_iA+_j B_jB+j - A+_jA—iB+jB—i = DOij~ (45)

Here Dy; is a function of the number operatai¥,,;, Ny;). We take an expectation value of
relation (4.5) for an exponential density operator for éhdoson and a pure-state density
operator for theB.; state, with

e8] N
p=> <]_[(1 - q,?)q,?"“’)lnm, M) (Mais i . (4.6)

ngi=0 Ni=1

Then the result will be aj-deformation of the algebra oB.; as we have done in the
previous section. Thg-parameters are given by

g2 = ei/keT i=12..N. (4.7)

Note that these-parameters differ with the quantal energies.
We first take the exponential phase operator4gs and the identity operator fabg;;
in (4.5) as

A = eqi(y) Ay = el,'(ai) Doij = 6;;. (4.8)
Here,e,; (;) is the similarity (adjoint) transformation of the exponential phase operator,

eqi (o) = ei?i €aiyr (4.9)

ai*

In order for A4; to be independent of each other aBd;, «; should commute with the
number operator#/,; and N;. Furthermore, we take them as numbers. Relation (4.5) is
rewritten ase,; (o;)e, (o)) B_i B — e} (o)eai (@) By B_; = &;.

The algebraic solutions faB.; in (4.5) are bosons,

B_; = b By =b. (4.10)

After taking the expectation value (4.5) with respect to (4.6), the nontrivial relations are
seen in the same species, since the density operator (4.6) is diagonal, with

B—i g+i - 6],-2[5’4-1'3—[ = 6]?1- (4.11)

These are relations of type |l for each species. We then encounter a problem to determine the
other relations between the different species consistently. To treat this problem properly, we
should take &-differential calculus and a Yang—Baxter equation into consideration [29, 30],
but we leave further details to a future paper, treat only the independent cases and restrict
our attention here to finding the hidden symmetries of the system.

We assume that all the; are equal to zero,

o = 0. (4.12)
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The different species oB.; are mutually independent and commuting in relations (4.11)
Thus we construct theV-component independent-bosons of differentg-deformation
parameters:

BB, — 6],-25i'/ ByjB_;=38; [Nbi, B+;] = £B;8;;. (4.13)
These independeng-bosons are simple extensions of theboson of type Il intoN
components.
We construct theu,(N) algebra by using the Schwinger method and find the hidden

symmetry taking place in the process of constructing the algebra.siTj{@&v) algebra is
given by

[Hi, H;] =0 [Ei, Fj] = é;;[Hi]

[Hi, Ej] = AjE; [Hi, Fj] = —Ai; F (4.14)
where ] = (¢* — ¢ ) /(g —q¢~Y) and A;; = 28;; — 841 — 8;;—1 is the element of the
su(N) Cartan matrix.

This algebra has only one deformation parameter. In order to constycy) by

combining the two independegtbosons of (4.13) in the product form, we should require
all g;-values to be equal, with

G=a==ay=q" (4.15)
The sameg-parameter means that the quantal energies of the Hamiltonian in the density
operator (4.6) should be equal, thateis= €, = --- = ey = €. Thus the Hamiltonian
becomes

H=¢) ala. (4.16)

The Hamiltonian in the density operator (4.6) has a gldida(N) symmetry,

i Tt
a; = Z Uija; a; = Z Uijaj
J J

Y UnUj; =) UkUy = 8. (4.17)
k k
Under this symmetry, the-boson (4.13) is changed intogaparameter algebra:
BB —q® BB, =5, [Npi, Bij] = £By;8;;. (4.18)

This algebra has the glob&lU (N) transformation (4.17) as its hidden symmetry. Also the
Chevalley basis ofu,(N) are given, in [4], by

H; = N; — Nij1 E; = ByiB_11 F; = By B
i=1...,N—1 (4.19)
As a result, we find the relation between the gloB&l(N) symmetry and the Schwinger

realization ofsu, (N).
As a second example, we consider 81, (N)-covariant bosons [5], where

BBy —¢*BuB_; = ¢* TN

EL,-E,}- = qB,jé,i i<j

BB.j=qB;B i #J. (4.20)
The algebra can be rewritten by tiSé&/ (N) R-matrix,

R=qu,-i®e,~,»+Ze,-,-®ejj+(q_q71)ze,-j®ej,» (4.21)

i#] i<j
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wheree;; is the N x N matrix with entry one at positioy, j) and zero elsewhere. Using
the notationR = R;; weix ® ej;, after a minor modification, relations (4.20) are rewritten as

BB_;=q 'RijuB_1B_;
ByiByj =q 'Ry;jBiiBy
B_iByj =8 +qRu BB (4.22)

We now derive the algebra (4.20). We choose new formd ofand Dy;; in (4.5) as
follows:

i—1
A = ey Ay =e),; Dgi; =0 (Nai - Z ka>5ij~ (4.23)
k=1
Relation (4.5) can be written as
i-1
eaiei_iB,iB+j — eljeaiBﬂB,i = 8ij9<Nai — Z ka>. (424)
k=1

We take the expectation value for the density operator (4.6) and obtain the non-trivial relation
only fori = j. We also require that the -bosons are all equivalent, i.e. their Hilbert space
has the globabU (N) symmetry as in the independepbosons. The non-trivial parts under

the expectation values of (4.24) are given by

B_iByi —¢°ByB_; = 6122-;;1 N, (4.25)

The differentg-bosons may be mutually commuting if we ignore the tower-like dependence
on the number operators (4.25), but the right-hand side of (4.25) prevents them from being
independeny-bosons. We introduce independent (commuting) operators which take the
right-hand side of (4.25) into a constant, with

By = q>+= "By, (4.26)
Then we obtain the algebra (4.18). We can thus treat them as independent in order to fix
the relation between different species:

éii é:tj = é:tj é:l:i éii é:Fj — q28;/ é:';j é:l:i = 511 (427)

These relations can be rewritten in terms of the original operaters We then obtain the
g-commuting property

B_iB_j=qB_;B_ B.iBy;=qB;B. i<

B—i B+j = qB+jB_i i 75 ] (428)
After combining (4.25) and (4.28), we obtain the fundamental representatiot/giv).
In reality, we needed to build in the commutatitivity of the transformed operators of the
different species by hand. A more systematic and general approach requijedittezential
calculus [29, 30].

We now consider the meaning of the choice of (4.24) as done in the previous section.

Introduce the operator similar transformation
eaioy) = eV e e eli (o) = e el % (4.29)

ai ai ai “ai-ai

where

i—1
o; = ZN},k. (430)
k=1
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Then the system (4.24) is changed into
eai(ai)ej,j(aj)B—iBL - elj(aj)eai(ai)BﬂB—i = §ij. (4.31)

This relation is equivalent to (4.8) except for theadjoint exponential phase operators.
As a result, theSU, (N)-covariant bosons are related to the adjoint transformation of
the exponential phase operator.

5. Discussions and conclusions

We see that the averaging method is a very convenient way to find the difference and
similarity between the different forms gf-bosons, but, to obtain our results, we restricted
the product of two commuting generators to satisfy the algebra which is different from
the product algebra up to their vacuum structure. This is a kind of constraint in which
the ¢g-boson is based, so we need to consider it further on the basis of the Hopf algebra
[16,17]. Although we were able to extend our ideas to the multicomponent system and
find the hidden symmetry, it still remains to fully consider it using the machinery of the
g-calculus [29, 30].

There are many different-bosons, not treated here. However, they can be included in
our method by relaxing and modifying the conditions given here. As a simple example, we
can construct, by using a similar method, théermion [6, 9],

CCT+4%C'C =1
More interesting things appear when the density operator is fermionic and this system is
related to extending the realparameter into a complex variable.

Various transformations using the exponential phase operator show some interesting
properties, since it is d&/(1) phase in the classical limit. We can thus obtain an
operator globaly (1) gauge transformation ( see theboson of type 1) by taking products
with an exponential phase operator. We can also define an operator adjoint (similarity)
transformation, but such transformations are not unitary, since the exponential phase operator
is not unitary. In particular, the adjoint transformation of a boson algebra (3.26) has the
shifted vacuum of a globa§U («) symmetry (3.29).

In order to generate a non-abelian gauge transformation, we need a non-abelian phase
operator that is still not defined. More generally, it will also be worthwhile extending the
above concepts into field theory [26] and the matrix model [23-25].
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