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Equivalence ofq-bosons using the exponential phase
operator

S U Park†
Department of Mathematics, School of Mathematical Sciences, Australian National University,
Canberra ACT 0200, Australia

Received 28 November 1995

Abstract. Various forms of theq-boson are explained and their hidden symmetry revealed
by transformations using the exponential phase operator. Both the one-component and the
multicomponentq-bosons are discussed. As a byproduct, we obtain a new boson algebra having
a shifted vacuum structure and define a global operatorU(1) gauge transformation.

1. Introduction

The q-boson‡ is the simplestq-deformed algebra having a deformation parameter. Various
kinds ofq-bosons have been introduced for their own motives. They can be transformed into
each other by proper redefinitions of their generators. The existence of such transformations
suggests that theq-bosons may be equivalent to each other, and there will exist underlying
symmetries that make the equivalence sensible. However, we cannot see any clues for
finding such symmetries.

One of the reasons for this fallacy of understanding may be connected to the difference
in the methods of construction, such as in the process of the Schwinger realization ofsuq(2)

in [1–3], and ofsuq(n) in [4], as the components of the fundamental representation ofsuq(n)

[5], or for other motives [5–10]. Each type ofq-bosons transforms into the others [11–13].
Another reason is that the Hopf algebraic structure does not fix theq-boson uniquely

[14, 15]. However, in this paper we will not be concerned about the Hopf structure [16, 17].
Recently, a new method of constructingq-bosons has been presented in [18, 19] in

which q-bosons are rewritten by the bi-product of different generators of bosonic type and
taking an expectation value for a density operator. Although its connection with the Hopf
structure has not been clarified, it explains someq-properties easily.

In this paper, we restrict the method to the boson and the exponential phase operator
[20–22]. Depending on the explicit choice, the different forms ofq-bosons appear, clearly
pointing to the difference and similarity between theq-bosons. As a result,q-bosons,
treated in this paper, are related to each other with the operator version ofU(1) gauge
transformation and the similarity transformation by the exponential phase operator. As a
byproduct, we find a new boson algebra which is equivalent to the normal boson algebra
except of the shifted vacuum, and the operator version of theU(1) gauge transformation

† Permanent address: Department of Physics, Jeonju University, 1200 Hyoja-3 Chonju, Chonbuk, 560-759, Korea.
‡ There are equivalent terminologies such as theq-Heisenberg-Weyl algebra and theq-oscillator, but we take the
q-boson in order to emphasize its relation with the complex variable.
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which becomes a normal gauge transformation in the classical limit. We work both on the
one-componentq-bosons and on the multicomponent forms.

The paper is arranged as follows. In section 2, we treat the statistical mixture in order
to see the physical meaning of the exponential phase operator and to define the physical
density operator forq-bosons. In section 3, we constructq-bosons and find connections
between them. We also define a new boson algebra and the operator version of theU(1)

gauge transformation. In section 4, we treat the multi-componentq-bosons and find a hidden
symmetry. Finally, we briefly discuss problems encountered along with extensions to the
q-fermion and so on.

2. The statistical mixture and the Cuntz algebra

Let us consider the statistical mixture of the bosonic system in order to define the density
operator of the expectation value which will appear in the process of constructingq-bosons.
We also discuss the physical meaning of the exponential phase operator. A more detailed
physical system related to this section should be found in quantum optics [20].

Assume that a system has a known probabilityPR when it is in the state|R〉. Here,
R is a label that runs over a set of pure states sufficient to describe the system. The states
described by the probabilityPR are called thestatistical mixture, and the magnitude of
the PR for |R〉 contains all the available information about the state. An example of a
statistical mixture is provided by the thermal excitation of the photons in a cavity mode.
The probabilityPn means thatn photons are excited at the temperatureT . In this case, the
result of an experiment depends on an ensemble average of some observable quantity.

Consider some quantum mechanical operatorO. The average value of the observable
for the pure state|R〉 is 〈R|O|R〉, and hence the ensemble average of the observable for
the statistical mixture specified byPR is

〈O〉 =
∑
R

PR〈R|O|R〉. (2.1)

It will be assumed thatPR is a normalized probability distribution∑
R

PR = 1. (2.2)

The average〈O〉 is independent of the particular complete set of the state chosen for
evaluation. This fact is apparent by defining the density operatorρ as follows:

ρ =
∑
R

PR|R〉〈R|. (2.3)

The density operator contains exactly the same information as the probability distribution
PR. The average〈O〉 can be written

〈O〉 = Tr(ρO) (2.4)

where the trace of an operator (hence abbreviated to Tr) is the sum of its diagonal matrix
elements for any complete set of states. In particular, the expectation value for the identity
operator is equal to unity by the definition of the probability Tr(ρ) = ∑

R PR = 1.

We can regard a pure state as a special case of a statistical mixture in which one of the
probabilitiesPR is equal to unity and all the remainingPR are zero. The pure-state density
operator is defined as

ρR = |R〉〈R|. (2.5)
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In this case, the state is retracted on a particular state and statistical description becomes
somewhat redundant. However, the concept of the density operator remains valid. Also the
pure-state density operator satisfies the property of the projection operator

ρ2
R = ρR (2.6)

which is easily proved from definition (2.5).
From now on, for later application, we will particularly restrict our attention to the

bosonic system(a, a†, N), where

[a, a†] = 1 [N, a†] = a†. (2.7)

The Hilbert state|n〉 is characterized by the number operator

N |n〉 = n|n〉 a|n〉 = √
n|n − 1〉. (2.8)

The ground state|0〉 is defined by the annihilation operatora|0〉 = 0 and all other states are
constructed from it:|n〉 = (1/

√
n!)(a†)n|0〉.

The generators of the boson algebra can be decomposed into the magnitudeN , i.e. the
number operator and the phaseφ, if we quantize in the polar coordinate(N, φ) of the phase
space,

a = ea

√
N a† =

√
Ne†

a. (2.9)

Here, the newly introduced operators(ea, e
†
a) are called the exponential phase operators. To

denote its relation with thea-boson, we introduce subscripta. There are various different
definitions of the exponential phase operators, but we will choose the Susskind–Glogower
notation [21, 22],

eae
†
a = 1 e†

aea = 1 − |0〉〈0| (2.10)

which is not unitary. The algebra is called the Cuntz algebra and will play an important
role in the largeN -expansion of the matrix model [23–25] and when calculating the
anomaly [26]. Although the Susskind–Glogower notation is mathematically easy and a
useful treatment, it is uncertain that it is a real physical operator which describes the nature
[27]. Nevertheless we will choose the notation for its convenience.

As we see in products of the exponential phase operators, they are similar to the
real phase (the unitary operator) except the vacuum. The commutation relations among
(N, e

†
a, ea) are derived from the boson algebra (2.7) and definition (2.9),

[N, ea] = −ea [N, e†
a] = e†

a. (2.11)

The exponential phase operator and its ajoint shift up and down one step in the number
state,

e†
a|n〉 = |n + 1〉 ea|n〉 = |n − 1〉. (2.12)

We now turn to the properties of the exponential phase operators in order to find their
physical meanings [20]. They are easily seen in the coherent state of the boson algebra
defined by the eigenstate of the annihilation operator,

a|z〉 = z|z〉. (2.13)

This |z〉 is normalized,〈z|z〉 = 1, and thus expressed by the superposition of the number
states:

|z〉 = e−|z|2/2
∞∑

n=0

zn

√
n!

|n〉. (2.14)
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The coherent density operatorρc can be written as

ρc = |z〉〈z|. (2.15)

The density operator shows a Poisson distribution with respect to the number state:

|〈n|z〉|2 = exp(−|z|2) |z|
2n

n!
. (2.16)

The mean value of the number operator (or mean number in short) under this probability is
|z|2, i.e. the radius or the magnitude of the complex variablez,

〈z|N |z〉 = |z|2. (2.17)

Similarly, the expectation value of the exponential phase operator becomes the physical
(real) phase in the limit of the large mean number (i.e. the classical limit),

〈z| ea|z〉 = z exp(−|z|2)
∑

n

|z|2n

((n + 1)!n!)1/2
. (2.18)

It is not possible to evaluate the summation analytically, the asymptotic expansion is
obtained for large|z|2, i.e. the classical limit, with∑

n

|z|2n

n!(n + 1)1/2
= exp|z|2

|z|
(

1 − 1

8|z|2 + · · ·
)

|z|2 � 1. (2.19)

Thus, the expectation value of the exponential phase operator becomes

〈z|ea|z〉 = z

|z|
(

1 − 1

8|z|2 + · · ·
)

→ eiφ. (2.20)

Sincez is a complex number, we can decompose it into its magnitude and phase,z = |z|eiφ ,
then the exponential phase operator becomes the physical phase asymptotically.

We define other well known density operators for later convenience. The pure-state
density operator for a number state is given by

ρn = |n〉〈n|. (2.21)

For the thermally excited state, we define the exponential distribution (a Planck distribution)
for a given temperatureT and a quantal energyε0 as

ρe = (1 − q2)
∑

n

q2n|n〉〈n|

= (1 − q2)q2N (2.22)

where aq-parameter is given by

q2 = exp(−ε0/kBT ). (2.23)

This parameter will act like theq-parameter in aq-deformation. Thus we can see a physical
deformation depending on the temperatureT and the quantal energyε0.

The following mean values under the exponential distribution (2.22) are obtained as

〈a†a〉 = q2

1 − q2
(2.24)

〈aa†〉 = 1

1 − q2
. (2.25)
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Also those related with the exponential phase operators (2.10) are obtained as follows:

〈eα
a e†α

a 〉 = 1 (2.26)

〈e†α
a eα

a 〉 = q2α (2.27)

〈θ(N − α)〉 = q2α. (2.28)

Here,θ(x) is a step function andα > 0 is taken as an integer in order to keep the structure
of the number state.

3. Construction of q-bosons and the hidden transformations

We consider a system in which the algebra is described by the generators(D±, D0) satisfying
the formal commutation relation

[D−, D+] = D0. (3.1)

We will not specify the commutators betweenD± and D0. Although they are important
to close an algebra, their effect is null in the expectation value. Furthermore, we assume
that two sets of independent bosons{(a, a†, Na), (b, b†, Nb)} contribute to the generators
D± in the product forms. The Schwinger representation ofsu(1, 1) (or su(2)) is the most
typical example in which a product of two independent bosons forms the new algebra. The
simple product of two independent bosons has been well studied [28], so we should extend
it to that of independent bosonic contributions such as boson generators themself, their
exponential phase operators and combinations of the exponential phase operators and the
number operators. A part of the algebra has already been treated in [19].

We choose the forms of two operatorsD± as follows:

D± = A±B±. (3.2)

A± andB± are assumed to be independent, i.e. commuting, and have the property of only
a- and b-bosons, respectively. In order not to complicate matters further, we restrictA±
andB± to have only one quantal number of their own:

[Na, A±] = ±A± [Nb, A±] = 0

[Na, B±] = 0 [Nb, B±] = ±B±
[A±, B±] = 0 [A∓, B±] = 0. (3.3)

HereNi , i = a, b is the number operator of each boson.
From the product form (3.2) ofD±, we rewrite the commutator (3.1) as follows:

A−A+B−B+ − A+A−B+B− = D0. (3.4)

We assume that its full Hilbert space ofA± in D± is known. The property of theB±
should be determined to keep the algebra ofD± depending on the forms ofD0. Under
this assumption, equation (3.4) itself is the relation forB±. To solve it, we should take an
expectation value for a density operator,

〈A−A+〉〈B−B+〉 − 〈A+A−〉〈B+B−〉 = 〈D0〉. (3.5)

We will discuss the results with respect to density operators. Two types of density operators
(2.21) and (2.22) will be used in this paper to see the algebraic structure (the pure-state
density operator) and theq-deformation (the exponential density operator). The coherent
density operator has already been used to interpret the physical meanings of the exponential
phase operator. Then relation (3.5) gives an algebraic relation depending on the forms of
the density operators. Generally we use the pure-state density operator only.
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We briefly discuss the algebraic solution forB± from (3.5). We take the pure-state
density operators for bothA± and B±. The relation reduces to an algebraic difference
equation in the variablesna andnb, formally written as

A(na + 1)B(nb + 1) − A(na)B(nb) = D(na, nb). (3.6)

Since the full structure ofA± is assumed known, we explicitly know about the form ofA.
Relation (3.6) becomes a difference equation forB. So we may find an algebraic solution
for B, and sequentially obtain the form ofB± with respect tonb. TheB formally represents
the square of magnitude ofB±. Since we assume from the outset thatB± changes a quantal
number ofNb, they are thus easily realized by the product of the square root ofB and
the exponential phase operator. The so-obtained solution ofB± is a formal one which we
should change into a normal form expressed by the boson generators(b, b†). This can be
done by using the definition of the exponential phase operator (2.9) and (2.10).

However, the situation is similar if we take an exponential density operator forA±
and a pure-state density operator forB±, respectively. We should choose the pure state
for B±, because their full Hilbert space is not assumed to be known. Relation (3.5)
under the resulting expectation value ofA± gives a new relation forB± depending on
the parameter arising from the density operator. In other words, the relation forB± looks
like the deformed algebra with respect to the algebraic solution. In reality, the forms ofB±
as the solution should not depend on the forms of the density operators, since the algebra
of (D±, D0) is satisfied without the density operator. The resulting algebra should not have
the deformation parameter [19, 20], but, in many cases, the relation takes the form of the
well known q-deformed algebra under redefinition of the parameter. As a result, we can
consider the process of taking the expectation value as a tool to obtain aq-deformation
physically. Also this method explicitly and directly explains why the mutual transformation
in the equivalent class of theq-deformations is possible and why they take such forms. The
explanation is that they are related to each other by the various transformations from the
initial undeformed operators.

We now proceed toq-bosons. Theq-bosons have been defined in different forms:

B̃−B̃+ − q2B̃+B̃− =


1 type I (3.7)

1 − q2 type I′ (3.8)

q−2Nb type II (3.9)

(1 − q2)q−2Nb type II′. (3.10)

Here we impose the various structural types to theq-bosons for our own convenience. These
q-bosons have been introduced by different authors [1–10]. Their mutual transformations
can be found in [11–13]. We now reconstruct the above types ofq-bosons from the relation
(3.5).

First, we proceed to theq-boson of type I by takingA± as the exponential phase
operators andD0 as the identity operator up to thea-vacuum,

A+ = e†
a A− = ea D0 = 1. (3.11)

Relation (3.4) is rewritten aseae
†
aB−B+ − e

†
aeaB+B− = 1. The algebraic solution ofB±

is approximately the bosonic generators, i.e.B+ = b†, B− = b. We note that, to get an
algebraic bosonic solution,D0 should be in the formD0 = 1 + Nb|0a〉〈0a|. Thus we say
thatD0 is the identity operator up to thea-vacuum. TakingD0 = 1 is a kind of a constraint.
For a more detailed treatment of the constraint see [19].

Then what is the meaning ofD+ = e
†
aB+(D− = eaB−)? To see this, we recall that the

exponential phase operator becomes the physical phase operator in the large mean number



Equivalence ofq-bosons using the exponential phase operator 3689

limit (the classical limit) of the coherent state, i.e.〈z|ea|z〉 = z/|z| + · · · ∼ eiφ . SinceB± is
equal to the boson generators, the related generatorsD− = eaB− (D+ = e

†
aB+) are similar

to a globalU(1) gauge transformation of the normal boson generators in the classical limit
of the coherent state of thea-boson. Thus we can say that the operatorsD± are the operator
global U(1) gauge transformation of the normal boson.B± is obtained fromD± by the
operatorU(1) gauge fixing, soB± is interpreted as the gauge fixed operator ofD±. Taking
the expectation value can be understood as gauge fixing.

Relation (3.5) under condition (3.11), i.e. taking the expectation values for the
exponential density operator ofA± in (2.26) and (2.27), gives

B̃−B̃+ − q2B̃+B̃− = 1. (3.12)

Here, we put the tilde on the operator in order to represent the connection between the
deformed and the original operators. As a result,B̃± is theq-boson of type I. We note that
theq-parameter arises from the exponential distribution of the statistically mixed state. We
use the density operator

ρenb
= (1 − q2)

∞∑
na=0

q2na |na, nb〉〈nb, na|. (3.13)

As a result, we can say thatthe operatorU(1) gauge transformed boson is deformed into
theq-boson of type I.

As a second example, we chooseA± as the boson andD0 as the identity operator up
to theb-vacuum in (3.5):

A+ = a† A− = a D0 = 1. (3.14)

This example is the reverse choice of the first example (3.11). The relation (3.4) is rewritten
as aa†B−B+ − a†aB+B− = 1. Note thatD0 = 1 + Na|0b〉〈0b|. Thus the state sum for
A+ = a† (A− = a) is just like that of the virtual particle state and as a result finds the
gauge information only.

The algebraic solution forB± is the exponential phase operator,

B− = eb B+ = e
†
b. (3.15)

This solution is easily seen from the first example (3.11).
We take the expectation value with the density operator (3.13), then consulting (2.24)

and (2.25) gives the relation

B̃−B̃+ − q2B̃+B̃− = 1 − q2. (3.16)

This relation shows theq-boson of type I′. As a result,the gauge transformation, i.e. the
exponential phase operator, is deformed into theq-boson of type I′.

We now construct theq-boson of type II′, and back to type II. We takeA± as the boson
andD0 as the identity except up to theαth state of thea-boson and theb-vacuum, i.e.

A+ = a† A− = a D0 = θ(Na − α). (3.17)

Relation (3.4) is rewritten asaa†B−B+ − a†aB+B− = θ(Na − α). In order to keep the
algebraic structure, we require thatα is independent ofna,

[Na, α] = 0. (3.18)

The corresponding algebra looks very strange in terms ofD0, since it is equal to the
identity depending on states of the algebra. This special property will be treated further
after constructing theq-boson of type II′.
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The algebraic solution forB± of (3.4) is the exponential phase operator satisfying
(2.10). After taking the expectation value for the density operator (3.13) and consulting
(2.24), (2.25) and (2.28), relation (3.4) gives theq-boson,

B̃−B̃+ − q2B̃+B̃− = (1 − q2)q−2α. (3.19)

This relation shows theq-boson of type II′ if we take

α = Nb (3.20)

B̃−B̃+ − q2B̃+B̃− = (1 − q2)q−2Nb . (3.21)

This choice is acceptable, since [Na, Nb] = 0.
From now on, we consider the meaning of this choice (3.17). Under the choice, relation

(3.4) is written as

aa†B−B+ − a†aB+B− = θ(Na − α). (3.22)

We first change the nontrivial termθ(Na − α) into the identity by a proper transformation.
It is just an operator similarity (i.e. adjoint) transformation ofx by the αth power of the
exponential phase operatoreα

a such ase†α
a xeα

a . We take the operator similar transformation
in which D0 = θ(Na − α) changes into the identity operator,

e†α
a θ(Na − α)eα

a = θ(Na) = 1. (3.23)

We make an operator similarity transformation on the boson algebra(a, a†, Na) and write
them as(a(α), a†(α), Na(α)) with

a(α) = e†α
a aeα

a a†(α) = e†αa†eα
a . (3.24)

These operators(a(α), a†(α)) form a new boson, so we call it theα-adjoint bosonfrom
now on. The relation (3.22) changes into (3.14) under theα-adjoint boson, i.e.

a(α)a†(α)B−B+ − a†(α)a(α)B+B− = 1. (3.25)

The q-boson (3.21) is an operatorα-adjoint transformed version of (3.16).
Let us consider more properties of theα-adjoint boson. The generators of theα-adjoint

boson satisfy the boson algebra with a different vacuum,

[a(α), a†(α)] = θ(Na − α). (3.26)

The vacuum of thea(α)-boson is defined in the same way as thea-boson with

a(α)|0a(α)〉 = 0. (3.27)

This vacuum contains up to theαth number state of the normal boson,

a(α)|na〉 = 0 if na 6 α. (3.28)

Thus we can think of theα-vacuum as the sum of the annihilated states,

|0a(α)〉 =
α∑

na=0

cna
|na〉 (3.29)

where thecna
’s are constants that should satisfy the normalization

α∑
na=0

|cna
|2 = 1 (3.30)

since the vacuum is normalized to unity (〈0a(α)|0a(α)〉 = 1). The vacuum of thea(α)-boson
forms the fundamental representation of the globalSU(α + 1) symmetry.
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We define the number operatorNa(α) of the a(α)-boson by

Na(α) = a†(α)a(α). (3.31)

The number state|na(α)〉 of the a(α)-boson is given by

Na(α)|na(α)〉 = na|na(α)〉 (3.32)

|na(α)〉 = 1√
na(α)!

(a†(α))na |0a(α)〉 = |na + α〉 na > 0. (3.33)

We take the expectation value of thea(α)-boson for the exponential density operator (2.22).
Motivated from the above operator adjoint transformation of the boson generators, we

make the transformation on the exponential phase operator,

ea(α) = e†α
a eae

α
a e†

a(α) = e†α
a e†

ae
α
a . (3.34)

These exponential phase operators act like the exponential phase operator (2.10) for the
vacuum|0a(α)〉,

ea(α)e†
a(α) − e†

a(α)ea(α) = |0a(α)〉〈0a(α)|. (3.35)

They also change the quantum number by one step and satisfy the same form of commutation
relations as in (2.11).

Finally we can construct theq-boson of type II by using theα-adjoint exponential phase
operator. We takeA± as theα-adjoint exponential phase operators andD0 as the identity
up to the vacuum|0a(α)〉 in (3.4),

A+ = e†
a(α) A− = ea(α) D0 = 1. (3.36)

Then the algebraic solution forB± is the bosonic generators, i.e.B+ = b†, B− = b.
ThusD± can be considered as the operator globalU(1) gauge transformation of the boson
generators. Relation (3.5), under the density operator (3.13), gives

B̃−B̃+ − q2B̃+B̃− = q−2α. (3.37)

This algebra is theq-boson of type II if we chooseα = Nb, with

B̃−B̃+ − q2B̃+B̃− = q−2Nb . (3.38)

As a result, theq-boson of type II is related to the gauge transformation by the adjoint
transformation of the exponential phase operator.

4. SUq(N )-covariant bosons andSU (N ) symmetry

We now proceed to extend the system (3.1) to anN -component system(D+i , D−i , D0ij )

which satisfies the commutation relations

[D−i , D+j ] = D0ij (4.1)

in the formal sense. All other commutators are related to the ladder structure of the algebra
and we will fix them in the middle of the construction ofq-bosons.

Similar to the previous one-component case, we introduce two sets ofN -component
independent bosons{(ai, a

†
i , Nai) (bj , b

†
j , Nbj )} such that

[ai, a
†
j ] = δij = [bi, b

†
j ] i, j = 1, 2, . . . , N

Nai = a
†
i ai Nbi = b

†
i bi i = 1, . . . , N. (4.2)

The Hilbert space, characterized by the number operators(Nai, Nbi), is spanned by pure
states|nai, . . . , nbN 〉.
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We assume thatD±i are decomposed into theai- andbi-contributions,

D−i = A−iB−i D+i = A+iB+i . (4.3)

The mutually independentA±i andB±i are fixed to the one-step operator,

[Nai, A±j ] = ±δijA±i [Nbi, B±j ] = ±δijB±i

[A±i , A±j ] = 0 [A±i , B±j ] = 0 = [A±i , B∓j ] i 6= j. (4.4)

For simplicity, the choice ofA±i is restricted to a normal boson and an exponential phase
operator. Also,D0ij is fixed to the identity operator and the step function to find the known
q-boson. After substituting the product form ofD±i into the commutator (4.1), we rewrite
the relation as

A−iA+jB−iB+j − A+jA−iB+jB−i = D0ij . (4.5)

HereD0ij is a function of the number operators(Nai, Nbi). We take an expectation value of
relation (4.5) for an exponential density operator for theai-boson and a pure-state density
operator for theB±i state, with

ρ =
∞∑

nai=0

( N∏
i=1

(1 − q2
i )q

2nai

i

)
|nai, nbi〉〈nai, nbi |. (4.6)

Then the result will be aq-deformation of the algebra ofB±i as we have done in the
previous section. Theq-parameters are given by

q2
i = e−εi/kBT i = 1, 2, . . . , N. (4.7)

Note that theseq-parameters differ with the quantal energies.
We first take the exponential phase operator forA±i and the identity operator forD0ij

in (4.5) as

A−i = eai(αi) A+i = e
†
ai(αi) D0ij = δij . (4.8)

Here,eai(αi) is the similarity (adjoint) transformation of the exponential phase operator,

eai(αi) = e
†αi

ai eaie
αi

ai . (4.9)

In order for A±i to be independent of each other andB±j , αi should commute with the
number operatorsNai and Nbj . Furthermore, we take them as numbers. Relation (4.5) is
rewritten aseai(αi)e

†
aj (αj )B−iB+j − e

†
aj (αj )eai(αi)B+jB−i = δij .

The algebraic solutions forB±i in (4.5) are bosons,

B−i = bi B+i = b
†
i . (4.10)

After taking the expectation value (4.5) with respect to (4.6), the nontrivial relations are
seen in the same species, since the density operator (4.6) is diagonal, with

B̃−i B̃+i − q2
i B̃+i B̃−i = q

αi

i . (4.11)

These are relations of type II for each species. We then encounter a problem to determine the
other relations between the different species consistently. To treat this problem properly, we
should take aq-differential calculus and a Yang–Baxter equation into consideration [29, 30],
but we leave further details to a future paper, treat only the independent cases and restrict
our attention here to finding the hidden symmetries of the system.

We assume that all theαi are equal to zero,

αi = 0. (4.12)
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The different species ofB±i are mutually independent and commuting in relations (4.11)
Thus we construct theN -component independentq-bosons of differentq-deformation
parameters:

B̃−i B̃+j − q
2δij

j B̃+j B̃−i = δij [Nbi, B̃±j ] = ±B̃±j δij . (4.13)

These independentq-bosons are simple extensions of theq-boson of type II intoN

components.
We construct thesuq(N) algebra by using the Schwinger method and find the hidden

symmetry taking place in the process of constructing the algebra. Thesuq(N) algebra is
given by

[Hi, Hj ] = 0 [Ei, Fj ] = δij [Hi ]

[Hi, Ej ] = AijEj [Hi, Fj ] = −AijFj (4.14)

where [x] ≡ (qx − q−x)/(q − q−1) and Aij = 2δij − δij+1 − δij−1 is the element of the
su(N) Cartan matrix.

This algebra has only one deformation parameter. In order to constructsuq(N) by
combining the two independentq-bosons of (4.13) in the product form, we should require
all qj -values to be equal, with

q2
1 = q2

2 = · · · = q2
N ≡ q2. (4.15)

The sameq-parameter means that the quantal energies of the Hamiltonian in the density
operator (4.6) should be equal, that isε1 = ε2 = · · · = εN = ε. Thus the Hamiltonian
becomes

H = ε
∑

a
†
i ai . (4.16)

The Hamiltonian in the density operator (4.6) has a globalSU(N) symmetry,

a′
i =

∑
j

Uij aj a
′†
i =

∑
j

U
†
ij a

′†
j∑

k

UikU
†
kj =

∑
k

U
†
ikUkj = δij . (4.17)

Under this symmetry, theq-boson (4.13) is changed into aq-parameter algebra:

B̃−i B̃+j − q2δij B̃+j B̃−i = δij [Nbi, B̃±j ] = ±B̃±j δij . (4.18)

This algebra has the globalSU(N) transformation (4.17) as its hidden symmetry. Also the
Chevalley basis ofsuq(N) are given, in [4], by

Hi = Ni − Ni+1 Ei = B̃+i B̃−(i+1) Fi = B̃+(i+1)B̃−i

i = 1, . . . , N − 1. (4.19)

As a result, we find the relation between the globalSU(N) symmetry and the Schwinger
realization ofsuq(N).

As a second example, we consider theSUq(N)-covariant bosons [5], where

B̃−i B̃+i − q2B̃+i B̃−i = q2
∑i−1

j=1 Nj

B̃−i B̃−j = qB̃−j B̃−i i < j

B̃−i B̃+j = qB̃+j B̃−i i 6= j. (4.20)

The algebra can be rewritten by theSU(N) R-matrix,

R = q
∑

i

eii ⊗ eii +
∑
i 6=j

eii ⊗ ejj + (q − q−1)
∑
i<j

eij ⊗ eji (4.21)
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whereeij is theN × N matrix with entry one at position(i, j) and zero elsewhere. Using
the notationR = Rij,kleik ⊗ ejl , after a minor modification, relations (4.20) are rewritten as

B̃−i B̃−j = q−1Rij,klB̃−l B̃−k

B̃+i B̃+j = q−1Rlk,ij B̃+kB̃+l

B̃−i B̃+j = δij + qRki,j lB̃+kB̃−l . (4.22)

We now derive the algebra (4.20). We choose new forms ofA± and D0ij in (4.5) as
follows:

A−i = eai A+i = e
†
ai D0ij = θ

(
Nai −

i−1∑
k=1

Nbk

)
δij . (4.23)

Relation (4.5) can be written as

eaie
†
ajB−iB+j − e

†
aj eaiB+jB−i = δij θ

(
Nai −

i−1∑
k=1

Nbk

)
. (4.24)

We take the expectation value for the density operator (4.6) and obtain the non-trivial relation
only for i = j . We also require that theai-bosons are all equivalent, i.e. their Hilbert space
has the globalSU(N) symmetry as in the independentq-bosons. The non-trivial parts under
the expectation values of (4.24) are given by

B̃−i B̃+i − q2B̃+i B̃−i = q2
∑i−1

j=1 Nj . (4.25)

The differentq-bosons may be mutually commuting if we ignore the tower-like dependence
on the number operators (4.25), but the right-hand side of (4.25) prevents them from being
independentq-bosons. We introduce independent (commuting) operators which take the
right-hand side of (4.25) into a constant, with

B̂±i = q
∑

k<i Nk B̃±i . (4.26)

Then we obtain the algebra (4.18). We can thus treat them as independent in order to fix
the relation between different species:

B̂±i B̂±j = B̂±j B̂±i B̂±i B̂∓j − q2δij B̂∓j B̂±i = δij . (4.27)

These relations can be rewritten in terms of the original operatorsB̃±i . We then obtain the
q-commuting property

B̃−i B̃−j = qB̃−j B̃−i B̃+i B̃+j = qB̃+j B̃+i i < j

B̃−i B̃+j = qB̃+j B̃−i i 6= j. (4.28)

After combining (4.25) and (4.28), we obtain the fundamental representation ofSUq(N).
In reality, we needed to build in the commutatitivity of the transformed operators of the
different species by hand. A more systematic and general approach requires theq-differential
calculus [29, 30].

We now consider the meaning of the choice of (4.24) as done in the previous section.
Introduce the operator similar transformation

eai(αi) = e
†αi

ai eaie
αi

ai e
†
ai(αi) = e

†αi

ai e
†
aie

αi

ai (4.29)

where

αi =
i−1∑
k=1

Nbk. (4.30)
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Then the system (4.24) is changed into

eai(αi)e
†
aj (αj )B−iB

†
+j − e

†
aj (αj )eai(αi)B+jB−i = δij . (4.31)

This relation is equivalent to (4.8) except for theα-adjoint exponential phase operators.
As a result, theSUq(N)-covariant bosons are related to the adjoint transformation of

the exponential phase operator.

5. Discussions and conclusions

We see that the averaging method is a very convenient way to find the difference and
similarity between the different forms ofq-bosons, but, to obtain our results, we restricted
the product of two commuting generators to satisfy the algebra which is different from
the product algebra up to their vacuum structure. This is a kind of constraint in which
the q-boson is based, so we need to consider it further on the basis of the Hopf algebra
[16, 17]. Although we were able to extend our ideas to the multicomponent system and
find the hidden symmetry, it still remains to fully consider it using the machinery of the
q-calculus [29, 30].

There are many differentq-bosons, not treated here. However, they can be included in
our method by relaxing and modifying the conditions given here. As a simple example, we
can construct, by using a similar method, theq-fermion [6, 9],

C̃C̃† + q2C̃†C̃ = 1.

More interesting things appear when the density operator is fermionic and this system is
related to extending the realq-parameter into a complex variable.

Various transformations using the exponential phase operator show some interesting
properties, since it is aU(1) phase in the classical limit. We can thus obtain an
operator globalU(1) gauge transformation ( see theq-boson of type I) by taking products
with an exponential phase operator. We can also define an operator adjoint (similarity)
transformation, but such transformations are not unitary, since the exponential phase operator
is not unitary. In particular, the adjoint transformation of a boson algebra (3.26) has the
shifted vacuum of a globalSU(α) symmetry (3.29).

In order to generate a non-abelian gauge transformation, we need a non-abelian phase
operator that is still not defined. More generally, it will also be worthwhile extending the
above concepts into field theory [26] and the matrix model [23–25].
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